If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+2t-200=0
a = 4.9; b = 2; c = -200;
Δ = b2-4ac
Δ = 22-4·4.9·(-200)
Δ = 3924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3924}=\sqrt{4*981}=\sqrt{4}*\sqrt{981}=2\sqrt{981}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{981}}{2*4.9}=\frac{-2-2\sqrt{981}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{981}}{2*4.9}=\frac{-2+2\sqrt{981}}{9.8} $
| 4(x-5)=1-3 | | -2(x-8)+4•=-12 | | G(5)=3x-4 | | 14x(30+x)=-196 | | 7.50x+1.35=12.90 | | 10=(3x–9)/2+(5x-8)/4 | | -12x=9-2x | | (3x–9)/2+(5x-8)/4=10 | | -22=2(w-1) | | 40-16x=0 | | (X-17)^2+k=0 | | 32^2x=12 | | 31=-8w+5(w+8) | | 8-8y=10 | | 2.25+5=13.t5+14 | | 8h+7hh=6 | | 6x-14x+3x=49 | | -20x/3+15x/7=5 | | x-2/7=49 | | 3a°-11=21+a° | | 2^6-x=4^2+x | | 2x+41=180 | | 4a^2-8a-39=0 | | 3^2x-2(3)^x=8 | | 28-4a=62a-2)+24 | | -3/5+g=3/10 | | 5/4+27/10=a | | -27+z=-21 | | 28-4a=6(2a-3)+4 | | 5×(x-3)=2×(7-x)-1 | | 4-6x=19-3x | | 4+3(6x+2)=18x+7 |